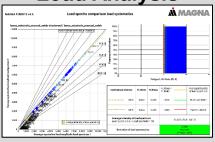


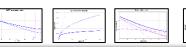
FEMSITE 4.8 Pushing the Limits

Introduction of Modules and Functionalities

FEMSITE: Modules and Functionalities

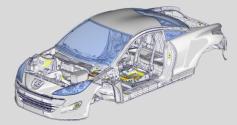
a commercial software product of MAGNA


FEMSITE is a workflow oriented software product which covers the complete structure durability process in the automotive development. More than 20 years of development and validation experience are concentrated in FEMSITE.


Online classification

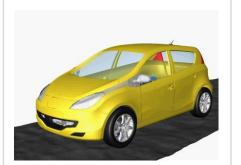
Load Analysis

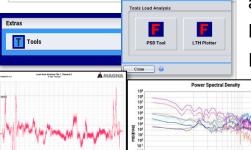
Analysis and preparation of load spectra from measurement or MBS simulation for simulation and test rigs


Joints database

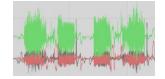
Material database

Fatigue



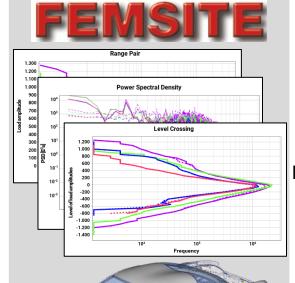

Design, analysis and optimization of components and complete vehicles based on linear or nonlinear simulation results combined with measured or simulated load time histories regarding → Stiffness, Strength and Fatigue

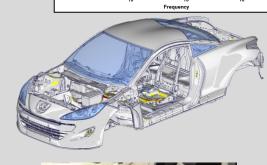
Module FEMSITE Load Analysis



1/26/2024

Virtual and / or physical road load data




Analysis of measured or calculated load spectra.

Supports a variety of established data formats, as for example:

Diadem/Diadago, RPCIII, RigSys, DASYLab,

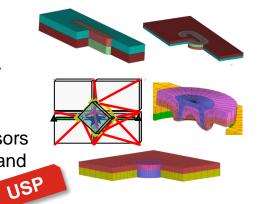
Adams, DADS, ASCII, TDM, etc.

Large number of evaluations available such as PSD, rainflow matrices, statistic values,...

Main functions are:

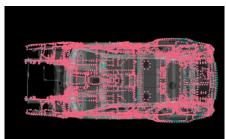
- load spectra comparison
- selective shortening
- MBS/FEM interface
- signal editing
- representative lap
- shaker program generation
- block program generation

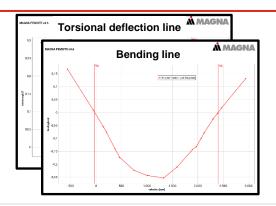
Transformed and / or selective shortened load time histories will be used on test rigs or for simulation


Author: FEMSITE Team

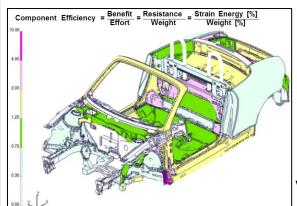
Disclosure or duplication without consent is prohibited

Module FEMSITE Fatigue – Part 1


Node independent generation of joining technique without any modification of mesh. Also available as interface in preprocessors Medina, Hypermesh and ANSA



Identification of **stress conditions** of **spotwelds**, areas with **high deformation** in a **flange** based on several load cases in early project phases. **optimization** regarding number and position.



Global characteristics of a car body such as torsion, bending stiffness and other evaluations available.

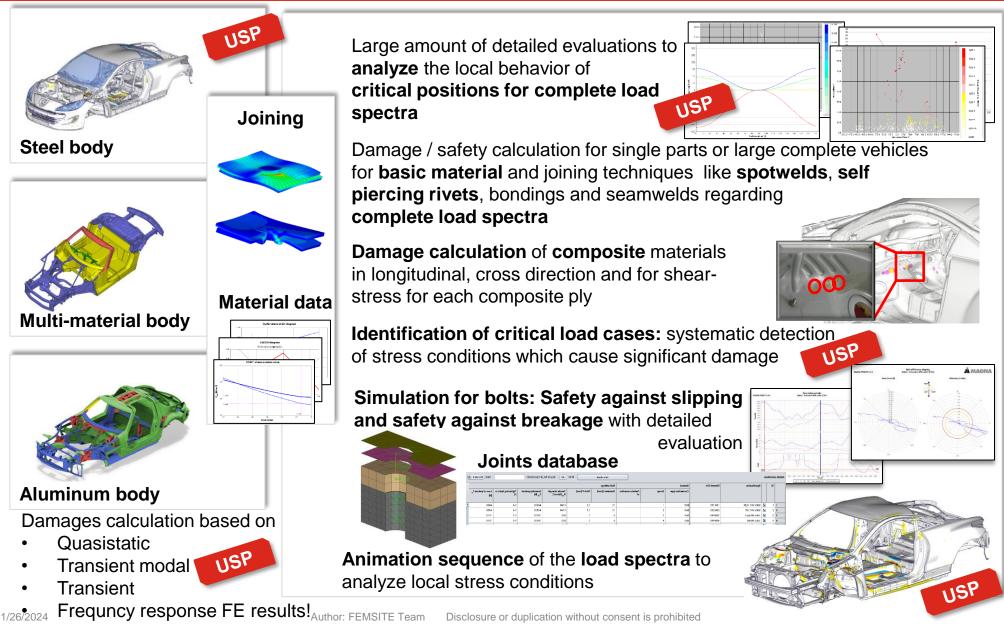
Component related evaluations to identify parts which have a large influence on a certain load case.

Lastfall Torsk		Variante 1	Variante 2											
		Torsion		Blegung										
		21-Nov-12		21-Nov-12										
Netz	Bezeichnung Variante:		Spannung [N/mm2]		Dicke [mm]		Element- anzahl		Masse [kg]		Verformungsarbeit [% von Auswertegr.]		Nutzungs - zahl [-]	
			1	2	1	2	1	2	1	2	1	2	1	2
1105		EBOCK HLFSR, HI 19	28,93	2,77	1,75	1,75	336	336	0,421	0,421	0.049	0,014	0,390	0,11
1110	SCHWELLER AUSSEN II		55,63	11,94	1,75	1,75	3154	3154	9,009	9,009	3,220	3,292	1,203	1,23
1145	SCHWELLER AUSSEN re		56.56	12.23	1.75	1.75	3142	3142	9.002	9.002	3,340	3,446	1,249	1.28
115	DECK	BLECH LTR Ted 1 re	3,59	1,87	1,60	1,60	246	246	0,379	0,379	0,007	0,002	0,063	0.01
1180	SITZO	UERTRAEGER II	29,63	74,12	0.70	0.70	2260	2260	1.953	1,953	0.332	7,546	0,573	
1185	SITZO	NUERTRAEGER ##	31,01	82 84	0.70	0,70	2242	2242	1,954	1,954	0,332	7,392	0,573	
120	LTRV	O TEIL 1 li	15,59	0.30	2.00	2.00	467	467	0.873	0.873	0.049	0.000	0.187	0.00
1205	VSTF	FUEHRUNGSSCH VO	4,41	69,65	2.00	2.00	256	256	0.341	0.341	0.004	7.562	0.042	
1235	VSTF	FUEHRUNGSSCH HI	5.91	31.27	2.00	2.00	176	176	0.359	0.359	0.008	1.707	0.075	
1240	ABSC	CHLUSSTEIL TUNNELBR. II	53.06	51.57	1,00	1.00	999	999	1.245	1,245	0.298	2,421	0.807	6.54
125	LTRV	O TEIL 1 re	5.87	0.40	2.00	2.00	483	483	0.887	0.887	0.029	0.001	0.111	0.00
1250	ABSC	CHLUSSTEIL TUNNELBR. 10	54.84	38.29	1.00	1.00	998	998	1.242	1.242	0.310	2.069	0.839	5.60
1275	VSTF	ERSENBLECH	15.15	35.42	1.25	1.25	1498	1498	1,926	1,926	0.150	2,798	0.262	4.89
1290	ZWIS	CHENSTUECK LTR II	26.50	15.80	1.75	1.75	330	330	0.432	0.432	0.197	0.532	1.537	4.14

MAGNA FEMSITE v4.8	CarBody - PlotEl's

Element ID	Change in length [mm]				
front_door_left	•				
Load Case 100, Group 401					
131	0,184937				
132	-0,150879				
front_door_left					
Load Case 200, Group 401					
131	-0,015503				
132	-0,033203				

v49: Ecological footprint

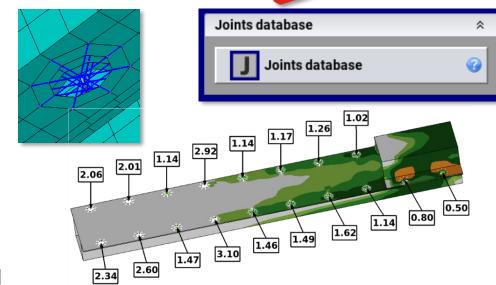

Different **input** and **output interfaces** available:

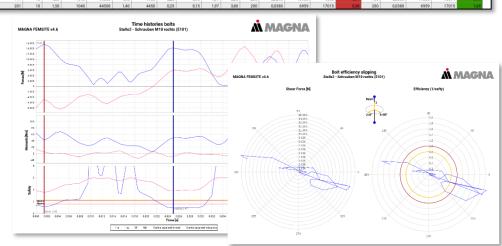
- Nastran: op2, Bulk Data
- Patran: Neutral file format
- Abaqus: odb

- Medina: bif / bof
- Universal file format

Module FEMSITE Fatigue – Part 2

Module FEMSITE Fatigue – Bolt safety calculation

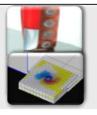

A MAGNA


- FEMSITE supports efficient bolt safety calculations (safety against slipping & safety against overload breakage) in time domain
- Bolt types are managed in the central **FEMSITE** Joints database
- Bolts can be easily defined in preprocessor Ansa.
- **Export** of the results for common postprocessors is available

Special detailed evaluations can be performed

in FFMSITF

- Bolt evaluation table
- Time-history plots of bolt forces, moments and safety values
- Bolt efficiency slipping
- **Recalculation of the bolts** allows the user to modify bolt parameters and quickly rerun the bolt calculation without FF- solver
- Basic load cases bolts allows the user to directly study basic load cases from an FEcalculation

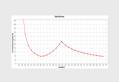

FEMSITE V4.8: New Features

Fatigue / Safety Analysis

- Safety against fatigue fracture
- Acceleration of safety calculation
- Averaging of stresses only for elements with corner stresses
- Evaluation of relative
 Minima/Maxima New color highlighting

Joining / Tools

- Extension of LTH plotter for PSD diagrams and statistics
- Adjust the stiffness values of spotwelds if the diameter is smaller than DIN
- Editing a bolt: the dependencies to other parameters are considered
- Check of spotweld position
- Adaptations during generation when a PID is contained in several parts


Structure

- Improved handling of variables for automatic evaluations in Pre-Module
- CarBody + Fatigue Multiaxial: Reading of Nastran bulk data files
- Send diagnostic information
- Pack FEMSITE job file with all dependencies into zip file
- Search + replace
- Optimization of memory usage
- Writing out a FEMSITE PSD csv file

FEMSITE Load Analysis

- Block program generation from load spectrum for chassis and powertrain
- Tool for creating Shaker test programs
- Support of load spectra with more than 2,1 billion time steps
- -Support virtual iteration of excitation signals (concept)
- MBS-transformation: Automatic assignment of the load types based on the units
- -Load spectra analysis for the chassis: calculation of the distance based on the wheel speeds
- Online classification: remove individual tracks from the evaluation,

Material Database

- Export non-linear characteristics to
 Nastran
- ExtensionTriaxiality +structural damping
- All specifications for materials written into the solver deck
- Encrypted material files: survival probability and range of dispersion are now visible

Workflow ANSA / META

- Critical bolt forces based on Abaqus odb files can now be displayed

Interfaces

- ABAQUS 2022 is supported now
- Export of Sets in Medina bif format
- Critical bolt forces can be exported to Abagus
- Prototype HDF5 export based on Animator a4db format
- Concept HDF5 import for Permas (result data only)

1

Five reasons to develop structure and durability with FEMSITE

- **FEMSITE** is a workflow oriented software which covers the complete development process for automotive industry including stiffness, strength and durability
- FEMSITE Load Analysis for processing and validation of load spectra
- **FEMSITE** can handle very **large models** (~10,000,000 elements) with **full joining technique** for complete load spectra. Very short calculation time due to **DMP-parallelization** and **intelligent** filtering of elements and/or cutting planes
- **FEMSITE** is best in class regarding the **cost / functionality** ratio
- **FEMSITE** has been developed and validated in many **project applications** across the **OEMs** for more than 25 years

contact persons: gerhard.kepplinger@magna.com

phone: +43 664 8840 2973

m.hofer@magna.com

phone: +43 664 8840 5748